
VULNERABILITIES BY ANALOGY
Why is a raven like a writing desk?

What am I doing?

■ I’m going to explain common attack and exploitation techniques, through my
power of analogy!

■ There are some great common parallels between computer security and the
real world

■ I will gently guide you from the real world into a high-level technical
understanding

■ Goal: Lay the groundwork of understanding attacks and vulnerabilities for
future

■ We will also talk about some of the common standards and groupings of
threats, vulnerabilities, weaknesses, and attack patterns (OWASP, CWE,
CAPEC, etc.)

VULNERABILITIES
the failures

INJECTION
FLAWS

Humans + code =
sadness

Pizza Robot

Goal:
- Deliver pizza
- Greet human
- Return to pizzeria

Process
1. Human goes to a website

2. Makes their order

3. Enters their name “Joe”

4. The pizza is made and
placed in delivery robot

5. Delivery robot is
programmed with
commands to get to the
house

6. Delivery robot delivers pizza
and says “Greetings, Joe”

7. Delivery robot returns to
base

Forward: 50 ft
Turn: Right
Forward: 300 ft
Turn: Left
Forward: 10 ft
Turn: Left
Forward: 5 ft
Greet: Joe
Deliver: Pizza
Return

Hijacking a Pizza Robot

Forward: 50 ft
Turn: Right
Forward: 300 ft
Turn: Left
Forward: 10 ft
Turn: Left
Forward: 5 ft
Greet: Joe
Deliver: Pizza
Return

Expected:
Joe
Unexpected:
Joe
Turn: Left
Forward: 1 ft
Turn: Left
Forward: 1 ft

Forward: 50 ft
Turn: Right
Forward: 300 ft
Turn: Left
Forward: 10 ft
Turn: Left
Forward: 5 ft
Greet: Joe
Turn: Left
Forward: 1 ft
Turn: Left
Forward: 1 ft
Deliver: Pizza
Return

What’s happening!?

■ Everything in White is “Code” – programmer supplied
– Code is simply special text that tells a system what to do
– GPS for a computer

■ Everything in Red is “Data” – user supplied
– Data is anything else: text, photos, etc.

■ The programmer assumed the name would not include “Code”
– Nobody’s named “Turn” or ”Forward” right?

■ When the user supplied those things the robot wrongly
interpreted them as “Code”

■ This is fundamentally the same thing that happens in XSS,
SQLi, Buffer Overflows, XML injection, and more!

Forward: 50 ft
Turn: Right
Forward: 300 ft
Turn: Left
Forward: 10 ft
Turn: Left
Forward: 5 ft
Greet: Joe
Turn: Left
Forward: 1 ft
Turn: Left
Forward: 1 ft
Deliver: Pizza
Return

XSS & SQLI Time to get real

Cross Site Scripting (XSS)
Mixing Code and Data using control characters
in the webpage

■ Try this anywhere you control a value on the page
– HTML
– JavaScript
– Headers

■ How is your input being encoded?

■ Test Cases
– Change your input
– Try <marquee>
– Try <script>alert('XSS')</script>

What Can You Do with XSS?

loginError.action?errorMsg=Sorry%2C+incorrect+username+or+password.

What Can You Do with XSS?

loginError.action?errorMsg=

</div><h1>Login Moved</h1><p>Please Login at:
http://evilportal.com</p>

What Can You Do with XSS?

loginError.action?errorMsg=

<marquee>

What Can You Do with XSS?

loginError.action?errorMsg=

<script>document.location='http://evilhacker.o
rg'</script>

When is XSS Possible?

Whenever a page includes unsanitized user input

When is XSS Possible?

www.catsearch.com?search=fluffy

http://www.catsearch.com/%3Fsearch=

When is XSS Possible?

www.catsearch.com?search=sadlfkjsadf...

http://www.catsearch.com/%3Fsearch=

When is XSS Possible?

www.catsearch.com?search=<script>aler...

http://www.catsearch.com/%3Fsearch=

SQL Injection
■ Mixing Code and Data using control characters

in Database Queries

■ Try this on any input you think may use the database
– Textboxes, URL Parameters, dropdowns, hidden fields

■ Start small, build more complex SQL Queries to manipulate the database

■ Test Cases
– Does ' Produce an error message?
– Think about how to manipulate the SQL command

SELECT * FROM USERS WHERE Username = 'joe' AND Password = 'P4S$WorD1';

Logging in with SQL Injection

SELECT * FROM USERS
WHERE Username = 'joe' AND
Password = 'P4S$WorD1';

Username joe

Password P4S$WorD1
Commentary:

Assuming correct username and password
the user is logged in

Input Values

Logging in with SQL Injection

SELECT * FROM USERS
WHERE Username = 'joe'' AND
Password = 'P4S$WorD1';

Username joe'

Password P4S$WorD1

com.fjordengineering.store.util.SecureSQLException

Commentary:

Errant single quote causes a parsing error.
Error returned to user.

Input Values

Logging in with SQL Injection

SELECT * FROM USERS
WHERE Username = 'joe'#' AND
Password = 'P4S$WorD1';

Username joe’#

Password P4S$WorD1

Login Success: User = joe

Commentary:

Password check is commented out.
Username is checked and attacker is
logged in as ‘joe’

Input Values

Logging in with SQL Injection

SELECT * FROM USERS
WHERE Username = 'joe' OR 1=1 #'
AND Password = 'P4S$WorD1';

Username joe’ OR 1=1 #

Password P4S$WorD1
Commentary:

Password check is commented out.
Username is checked and attacker is
logged in as ‘joe’

Everything after the # is disregarded

Input Values

Logging in with SQL Injection

SELECT * FROM USERS
WHERE Username = 'joe' OR 1=1;

Username joe’ OR 1=1 #

Password P4S$WorD1
Commentary:

Password check is commented out.
Username is checked and attacker is
logged in as ‘joe’

1=1 is always TRUE, so we can replace
that

SELECT * FROM USERS
WHERE Username = 'joe' OR TRUE;

Input Values

Logging in with SQL Injection

SELECT * FROM USERS
WHERE Username = 'joe' OR 1=1;

Username joe’ OR 1=1 #

Password P4S$WorD1
Commentary:

Password check is commented out.
Username is checked and attacker is
logged in as ‘joe’

Anything OR TRUE is always TRUE

SELECT * FROM USERS
WHERE Username = 'joe' OR TRUE;

SELECT * FROM USERS
WHERE TRUE;

Input Values

Logging in with SQL Injection

SELECT * FROM USERS
WHERE Username = 'joe' OR 1=1;

Username joe’ OR 1=1 #

Password P4S$WorD1
Commentary:

Password check is commented out.
Username is checked and attacker is
logged in as ‘joe’

OR 1=1 # short circuits the entire where
clause in this case

SELECT * FROM USERS
WHERE Username = 'joe' OR TRUE;

SELECT * FROM USERS
WHERE TRUE;

SELECT * FROM USERS;

Input Values

INJECTION FLAWS ALLOW
AN ATTACKER TO INJECT
THEIR OWN CODE INTO
THE PROGRAM

BROKEN
AUTHENTICATION

Check ID at the
door

IS A HI-VIS
VEST
MORE

POWERFUL
THAN ID?

FREE
MOVIES

ENTRANCE
TO THE

ZOO

COLDPLAY?

I wasn't a big
fan of Coldplay
before I saw
them in hi-vis

Authentication Issues

■ Many opportunities to make mistakes
– Not checking credentials

properly
– Not storing credentials properly
– Not protecting authentication

tokens properly
– Loss of credentials
– Password reuse
– Phishing
– Failure to use 2FA
– Cookie issues
– XSS
– CSRF
– …

■ Verify your users
■ Protect their credentials
■ Protect credential equivilents

PRIVILEGE
ESCALATION

Can I steal your TV
through your shed?

I want in here I can get in here

What’s in a house?
■ TV

■ Computers

■ Electronics

■ Money

What’s in a shed?
■ Ladders

■ Bolt cutters

■ Spare keys

■ Drills & Saws

Start Here Go Here

Horizontal vs. Vertical Escalation

■ Horizontal Privilege Escalation
– Allows one user can access another user’s data

■ Vertical Privilege Escalation
– Allows a user to increase their privilege level
– Anonymous -> User
– User -> Manager
– Manager –> Administrator

INFORMATION
DISCLOSURE

I bet that guy is in
sales, I can tell by
his suit

A guy walks into a bar…

Passive - Observe
What’s he wearing?
Shoes
Hair
Wedding ring
Dirt under fingernails
Scars

Active - Start a conversation
Where are you from?
Siblings?
How old are you?
Pets?
Job?

Computers give away
information all the time
■ Hackers gather that information and use it

against us every day

■ Tools and Databases scan and collect this
information for easy querying

■ Our job is to protect this information

PARAMETER
TAMPERING

Control the data
Control the future

Let’s find some deals!
■ Peel off the tags from some Wonder Bread

■ Apply tags to fancy bread!

ALWAYS BE
NICE TO YOUR
MILLENNIALS

Everything a
computer

does starts
with input

Without input a computer will
always do the same thing

Input filtering, processing, and
blocking sets the stage for
everything else

CONFIGURATION
ERRORS

Don’t put the locks
on the wrong side
of the door

Doors,
Windows,
and Locks

Installing a door can be difficult to do
securely

Installing a window so it locks
automatically

Don’t forget to lock your doors and
windows

Did you remember all your doors and
windows?

Many software systems can be
configured securely
■ Most software systems don’t come secure by default

■ Insecure use of existing components
– The door is installed poorly

■ Insecure configuration of components
– The lock is misconfigured

■ Insecure defaults are used
– The lock has a reused key or default keycode

MAKING SENSE OF
SO MANY ISSUES

Grouping by Threat, Weakness, Attack Pattern

OWASP, CWE, CAPEC, and More!

OWASP
Open Web Application Security
Project
■ Most famous for the OWASP Top 10

■ A semi-updated list of the most critical web
application security risks

– 2004
– 2007
– 2010
– 2013
– 2017

■ De-facto standard for basic web application testing

CVSS
Common Vulnerability Scoring System

■ A vulnerability scoring calculator

■ Included with all our PRs

■ Considers Exploitability and Impact
metrics

■ Can be extended to Temporal and
Environmental Metrics

■ Exploitability
– Attack vector

– Attack complexity
– Privileges Required
– User Interaction
– Scope

■ Impact Metrics
– Confidentiality Impact
– Integrity Impact
– Availability Impact

CWE
Common Weakness Enumeration
■ An enumeration of common software

weaknesses (think flaws or vulnerabilities)

■ CWE Top 25: Recently updated in 2019,
methodology changed

■ Great for mapping to internal tools
■ Important reference
■ Not a test plan

■ New: Released 2018

■ Confusingly named ATT&CK framework

■ Focused on enterprise risk (think Attack Sim and Red Teaming)

■ Partially maps to our Attack Sim and Red Teaming

■ May map to our Cloud CMD+CTRL CyberRanges

CAPEC
Common Attack Pattern
Enumeration and Classification
■ An Exhaustive list of every attack possible against

any system organized by Domain or Mechanism

■ 517 total attack patterns

■ Mostly academic

■ Great for having a standard language for attacks

■ Great for mapping attacks to internal resources

■ Not a test plan

